Integrated microfluidic devices for combinatorial cell-based assays.
نویسندگان
چکیده
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.
منابع مشابه
Moving microfluidics ahead: Extending capabilities, accessibility, and applications
Paul Blainey is professor of Biological Engineering at MIT. In this contribution he describes three microfluidic technologies that he and his team has developed to extend the capability, accessibility, and applications of microfluidics: (1) Integrated microfluidic sample preparation for genomic assays, (2) hydrogel-based microfluidics for single-cell genome sequencing, and (3) an emulsion-based...
متن کاملMicrofluidics technology for manipulation and analysis of biological cells
Analysis of the profiles and dynamics of molecular components and sub-cellular structures in living cells using microfluidic devices has become a major branch of bioanalytical chemistry during the past decades. Microfluidic systems have shown unique advantages in performing analytical functions such as controlled transportation, immobilization, and manipulation of biological molecules and cells...
متن کاملExpanding the available assays: adapting and validating In-Cell Westerns in microfluidic devices for cell-based assays.
Microfluidic methods for cellular studies can significantly reduce costs due to reduced reagent and biological specimen requirements compared with many traditional culture techniques. However, current types of readouts are limited and this lack of suitable readouts for microfluidic cultures has significantly hindered the application of microfluidics for cell-based assays. The In-Cell Western (I...
متن کاملArbitrarily Accessible 3D Microfluidic Device for Combinatorial High-Throughput Drug Screening
Microfluidics-based drug-screening systems have enabled efficient and high-throughput drug screening, but their routine uses in ordinary labs are limited due to the complexity involved in device fabrication and system setup. In this work, we report an easy-to-use and low-cost arbitrarily accessible 3D microfluidic device that can be easily adopted by various labs to perform combinatorial assays...
متن کاملMicrofluidic library screening for mapping antibody epitopes.
The capability to screen molecular libraries using disposable microfluidic devices provides the potential to simplify and automate reagent generation and to develop integrated bioanalytical systems for clinical diagnostics. Here, antibody epitopes were mapped using a disposable microfluidic device to screen a combinatorial peptide library composed of 5 x 108 members displayed on bacterial cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical microdevices
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2009